Bases: Module
Source code in vllm/model_executor/models/modernbert.py
  instance-attribute  ¶
 Wqkv = QKVParallelLinear(
    hidden_size, head_dim, num_heads, bias=attention_bias
)
 instance-attribute  ¶
 attn = EncoderOnlyAttention(
    num_heads,
    head_dim,
    scaling,
    prefix=f"{layer_id}.attn",
    per_layer_sliding_window=sliding_window,
)
 instance-attribute  ¶
 rotary_emb = ModernBertRotaryEmbedding(
    config=config,
    head_size=head_dim,
    dim=head_dim,
    base=rope_theta,
)
 
 __init__(
    config: ModernBertConfig, layer_id: int | None = None
)
Source code in vllm/model_executor/models/modernbert.py
  
  Source code in vllm/model_executor/models/modernbert.py
  
  Bases: Module
Source code in vllm/model_executor/models/modernbert.py
  instance-attribute  ¶
 tok_embeddings = VocabParallelEmbedding(
    vocab_size, hidden_size
)
 
  Source code in vllm/model_executor/models/modernbert.py
  
  Source code in vllm/model_executor/models/modernbert.py
  
  Bases: Module
Source code in vllm/model_executor/models/modernbert.py
  instance-attribute  ¶
 layers = ModuleList(
    [
        (ModernBertLayer(config=config, layer_id=layer_id))
        for layer_id in (range(num_hidden_layers))
    ]
)
 
 __init__(vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/modernbert.py
   
    
  Bases: Module, SupportsCrossEncoding
Source code in vllm/model_executor/models/modernbert.py
  instance-attribute  ¶
 model = ModernBertModel(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "modernbert"),
)
 instance-attribute  ¶
 pooler = DispatchPooler(
    {
        "token_classify": for_token_classify(
            pooler_config, classifier=classifier
        ),
        "classify": ClassifierPooler(
            pooling=pooling,
            classifier=classifier,
            act_fn="classify",
        ),
        "score": ClassifierPooler(
            pooling=pooling,
            classifier=classifier,
            act_fn="score",
        ),
    }
)
 
 __init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/modernbert.py
  
 forward(
    input_ids: LongTensor | None,
    positions: Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/models/modernbert.py
  
    
  Source code in vllm/model_executor/models/modernbert.py
  
  Bases: Module
Source code in vllm/model_executor/models/modernbert.py
  instance-attribute  ¶
 model = ModernBertModel(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "modernbert"),
)
 instance-attribute  ¶
 pooler = DispatchPooler(
    {
        "token_classify": for_token_classify(
            pooler_config=pooler_config
        )
    }
)
 
 __init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/modernbert.py
  
 forward(
    input_ids: Tensor | None,
    positions: Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/models/modernbert.py
  
    
    
  Bases: Module
Source code in vllm/model_executor/models/modernbert.py
  
  Source code in vllm/model_executor/models/modernbert.py
  
  Source code in vllm/model_executor/models/modernbert.py
  
  Bases: Module
Source code in vllm/model_executor/models/modernbert.py
  
  Source code in vllm/model_executor/models/modernbert.py
  
  Bases: Module
Source code in vllm/model_executor/models/modernbert.py
  class-attribute instance-attribute  ¶
 hf_to_vllm_mapper = WeightsMapper(
    orig_to_new_prefix={"layers.": "encoder_layer.layers."}
)
 
 __init__(vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/modernbert.py
  
 forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/models/modernbert.py
  
    
  Source code in vllm/model_executor/models/modernbert.py
  
  Bases: Pooler
Source code in vllm/model_executor/models/modernbert.py
  
  Source code in vllm/model_executor/models/modernbert.py
  
 forward(
    hidden_states: Tensor | list[Tensor],
    pooling_metadata: PoolingMetadata,
) -> Tensor | list[Tensor]
Source code in vllm/model_executor/models/modernbert.py
  
 get_pooling_updates(
    task: PoolingTask,
) -> PoolingParamsUpdate
 
 get_supported_tasks() -> Set[PoolingTask]
 
  Bases: Module
Source code in vllm/model_executor/models/modernbert.py
  instance-attribute  ¶
 norm = LayerNorm(
    hidden_size,
    eps=getattr(config, "norm_eps", 1e-05),
    bias=getattr(config, "norm_bias", True),
)
 
  Source code in vllm/model_executor/models/modernbert.py
  
  Bases: RotaryEmbedding